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VACCINATION RESPONSE DATA STRUCTURE
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@ Subgroups of individuals of interest to researchers (e.g. age, sex, living-condition) are vaccinated at day 0, and samples are
collected pre-vaccination (day 0), and at time-points post-vaccination.

@ Total of / X n X k data points




JCINATION RESPONSE DATA STRUCTURE
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@ Total of n X k X | data points

@ Want to answer questions including:

@ Are there different subgroups of individuals that respond differently to the vaccine (either the pre-determined
subgroups, or other clusters)?

@ Which genes are most active in the response?

@ Are there additional covariates that mitigate response signature? (e.g. demographics, experiment,...)




NON-NEGATIVE MATRIX FACTORIZATION (NMF)
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Recall that for a non-negative matrix,
Xnxm, non-negative matrix
factorization (NMF) finds a rank R
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(Stein-O'Brien et al., 2018)
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NON-NEGATIVE CP DECOMPOSITION (NCPD)
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@ Non-negative CP decomposition (NCPD) extends the concept of representing a dataset as
the sum of rank-one components to > 2 dimensions.

o For a tensor X’ of gene expression x subject x time data, we can represent X as

R
X~ [ A, AR, AOT = 3 Aal 0l o al®), 1)
r=1
where asi) >0 and HaSi)HQ: 1 for i = {1,2,3}, and X is the normalization constant.
o Denoting X = [[X; A, A®) AB)]], the objective to minimize for tensor decomposition:

min X, X), 2
X,A() A2 AB) >0 i ) 2)

o ¢(X,X) is the loss function e.g., squared Frobenius norm! ¢(X, X) = 1||x — X|2. We
denote this decomposition as NCPD-F.

LUsed in CP-OPT/CP-ALS library in Tensor Toolbox
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NON-NEGATIVE CP DECOMPOSITION (NCPD): INTERPRET
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NON-NEGATIVE CP DECOMPOSITION (NCPD): CHOOSING RANK

How to choose the number of rank R for decomposition?
o If R is less than the true rank, we risk not being able to detect all patterns in the dataset.
@ By setting the number of ranks too high, component splitting may occur. In this case,

decomposition will split one pattern into two or more- rendering the analysis of each of these
not only uninformative but also misleading.
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NON-NEGATIVE CP DECOMPOSITION (NCPD): CHOOSING RANK

COMPONENT SPLITTING IN NCPD-F

@ A well-known amino acids data set from Andersson and Bro 2.

@ Contains fluorescence measurements of 5 samples containing 3 amino acids: Tryptophan, Tyrosine, and
Phenylalanine.

@ Each amino acid corresponds to a rank-one component.
@ The tensor is of size 5 x 51 x 201 from 5 samples, 51 excitations, and 201 emissions.

@ When the decomposition rank is set to be higher than the true rank, component splitting can occur. Here,
a ‘true’ component from a rank three decomposition is split on the third mode.

Split components (r=8)
True component (r=3) 05 I

’..I__ll.. VN - i
| .

0.5-

2Rasmus Bro, PARAFAC: Tutorial and applications, Chemometrics and Intelligent Laboratory Systems, 1997, 38, 149-171




NON-NEGATIVE CP DECOMPOSITION (NCPD): CHOOSING RANK

@ We choose the rank R of the model based on the following considerations:
o Relative Frobenius error
X — X%
X117

o Similarity score: For two mode-3 models of same rank R, &1 = [[A}; AN, A® A®)]] and
Xy = [[22; BY, B®, BO)]], similarity score is defined as:

PN 1 & A7 — )‘ T
— il _ (r ()" p0
S(A, ) = max — ; (1 0L ,\2 ) [1:9 80, 3)

i=1

@  denotes the set of all permutations of the factors, and w is a particular permutation.

@ Similarity score measures robustness of a decomposition across varying initial conditions.
o max internal n-similarity (mINS): A new metric to determine whether component splitting has
occurred. 3

3Developed by Konstorum et. al [1] Kleinstein Lab, Yale University. Manuscript preparation in progress.
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/E CP DECOMPOSITION (NCPD): CHOOSING RANK

© The maximum internal n-Similarity (mINS) is used to assess whether component splitting has occurred in

an NCPD.
o For a mode-3 model of rank R, X = [[X; AD, A® A®)]] the mINS is defined as
= (AW .o (A
mins = max (g (A7) g (47)). @

where g; ;j(A) = S(a;, aj) is a similarity measure (such cosine or correlation) between columns i and j in matrix A.
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@ The plot is generated using CP-OPT library in Tensor Toolbox where the objective used for the
decomposition is the Frobenius norm (NCPD-F).
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MOTIVATION BEHIND OPTIMAL TRANSPORT-BASED TENSOR

FACTORIZATION

o We are thus motivated to modify NCPD so that splitting does not occur before all patterns
are identified.

e This is where using the recently proposed optimal transport based tensor factorization
namely Wasserstein tensor factorization # [2] may prove useful.

o Loss function based optimal transport theory incorporates the underlying geometry of the data, thus
is able to recover all components without distortions.

True Wasserstein Tensor Factorization Frobenius-CP
a Bi Vi a Bi Vi L3 Bi Vi

AL

-1 0 1-1 0 1-1 o 1 -1 0 1-1 0 1-1 0 1 -1 0 1-1 0 1-1 0 1
Image source: Zhang et al. [2]

FIGURE: AX- =33 «j o i o v, where {«;, Bi, i 3 are univariate Gaussian. o denotes
True i=1 ot s Pis Yifi=1
the outer product of vectors.

4Zhang et. al A unified framework for non-negative matrix and tensor factorisations with a smoothed wasserstein loss,
https://arxiv.org/abs/2104.01708



https://arxiv.org/abs/2104.01708

WASSERSTEIN TENSOR FACTORIZATION

OPTIMAL TRANSPORT
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image source: Computational OT by Cuturi and Peyre [2]

o Given o and 8 are probability distribution supported on a finite set Q, with
Cardinality(2) = n.

o Let C € R"™” be the ground cost matrix with Cj; denoting the cost of transporting mass
from point i to j. The optimal transport distance is defined via

def .
OT(a, = C, : C; 5
(,8)' = min (C,7)= min Z i (5)
where T(a, 8) = {y e RYY" 1 v 1= a,yT 1= B} is the set of all couplings of («, 8), and 7 is
the optimal coupling.

e For ground cost Cjj, one may choose squared of Euclidean distance between the points in
support of a and 8 (this is also known Wasserstein-2 distance).

o Drawbacks: Computationally expensive O(n3).
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WASSERSTEIN TENSOR FACTORIZATION

ENTROPY REGULARIZED OPTIMAL TRANSPORT

o Entropy regularized optimal transport [3]

OTe(e, B) := '?i (C,7) +eE(), (6)

I
Y€ (e, 8)

o E(y) = (v,log~y — 1) is the entropy of the coupling matrix.
o ¢ > 0 is the entropy regularizer.
e Ase — 0, OT. — OT.

o Advantages
@ Smooth and strongly convex.

o Computationally cheaper, e.g. Sinkhorn algorithm has complexity (’)(n2 log nsfz) [4].
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WASSERSTEIN TENSOR FACTORIZATION

OT DISTANCE BETWEEN TENSORS
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o Given two tensors X, € R"XmXn3_ Consider X,y € P(), where P(Q) is the set of all
probability distributions over the multi-index support set 2. Optimal transport distance
between X and Y is,

OT(X, )= __inf = (C.7). ()

o '(X,Y) is the set of all possible couplings between X and ) and C is the ground cost tensor
where C(i1i2i3),(jl,j2,j3) denotes the cost to couple point (i1, iz, i3) to (ji,J2,/3)-

3
_ (k)
Cliviis),(jnioss) = Z C"kv]‘k’ (8)
k=1

where C(K) is the cost matrix for the kth mode of tensor X.
o Entropic OT between X and )

OTe(¥,¥)1=__inf _ (C.%) +cE(). ©)

Zhang et al. A unified framework for non-negative matrix and tensor factorisations with a smoothed wasserstein loss,
https://arxiv.org/abs/2104.01708
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WASSERSTEIN TENSOR FACTORIZATION

o Decomposition of tensor X>o € R™*™*™ using entropy regularized optimal transport [2]

i OT. (X, [[x; AW, AQ) AG)), 10
A T )5, OTe( I 1) (10)
where Al) ¢ R’géR’ i=1,2,3, [\ AD, AR AG)] = 25:1 )\ragl) . a$2) . a£3).

e [2] solves the following to decompose X

3
OT(X, [N AW, AP, AP 43 pj B, (AD) (11)

min
2,A) A(2) AGB) =

where Ex,(A') = E(AD) + £(AD) € %), ¥; is the constraint set of A() and £(-)

0,ifxeA
+o00 otherwise.

Z(XEA)—{

is the indicator function.
o E(-) relaxes the non-negativity constraint.

o Equation 9 is solved by performing block coordinate descent algorithm in each of the factor
matrices individually [2].
@ We denote this decomposition as NCPD-W.

Zhang et al. A unified framework for non-negative matrix and tensor factorisations with a smoothed wasserstein loss,
https://arxiv.org/abs/2104.01708
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PLATELET RNASEQ VACCINATION TIME-COURSE

Recruitment: subjects getting the flu vaccine (2018) from three cohorts
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A tensor framework of genes X subject X day is used to store the data.
The final dimensions of the tensor is 500 x 54 x 4. (500 most variable genes, 54 subjects
with data for all days.)
Hyperparameters used in NCPD-W.
Hyperparameter | Value

€ 0.1
p 0.01
learning rate 1
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PLATELET RNASEQ VACCINATION TIME-COURSE

o Comparison between NCPD-F and NCPD-W in terms of normalized Frobenius error,
similarity score and mINS.
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o Observations:

o Error decreases as rank increases for both NCPD-F and NCPD-W. However, for any given rank R,
NCPD-W has slightly higher error compared to NCPD-F.

Similarity score decreases almost monotonically as rank R increases for NCPD-W.
As rank (R) increases, mINS scores increases for both NCPD-F and NCPD-W.

o mINS scores for NCPD-F are higher than NCPD-W when R > 5, which may indicate component
splitting for NCPD-F.
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(@) Subject and Day scores for
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@ For R =5, NCPD-F successfully discovers all 5 components with no splitting.

Konstorum et al. Platelet response to influenza vaccination reflects effects of aging, bioRxiv

Tensor components related to platelet activation and age group (NCPD-F, Rank = 5)

(c) Heatmap of clustered samples based

on component scores

(d) Principal component analysis on samples

using component scores
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@ Subject component scores show a strong association with the three groups (Figure (c) and (d)).
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PLATELET RNASEQ VACCINATION TIME-COURSE

Tensor components related to platelet activation and age group (NCPD-W, Rank = 5)
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@ For R =5, NCPD-W discovers few new patterns ones e.g., 1,2, 4.
@ Day scores closely follows the original expression levels for top scoring genes.
@ Subject component scores show a strong association with the three groups (Figure (c) and (d)).

@ NCPD-W components found association with few new pathways which were not discovered with NCPD-F.




PLATELET RNASEQ VACCINATION TIME-COURSE

o Effect of component splitting when NCPD-F decomposition with higher rank.
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Tensor components related to platelet activation and age group (NCPD-F, Rank = 9)
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(b) Expression levels for top 5 scoring subjects
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CAVIN2 TUBB1 MT-ND1 NRGN
20
k3 - — \/ =
15 \V/
8 v
10 20 0 10 20 0 10 20 0 10 20
CAVIN2 TUBB1 NRGN
20
3 — — -
%15 —
8
ra— e m T ® REETI

@ Day patterns associated with component 3 and 4 do not follow the original gene expression individually.

@ Added components will follow the gene expression, which clearly indicates the NCPD-F suffers from component splitting.




PLATELET RNASEQ VACCINATION TIME-COURSE

Tensor components related to platelet activation and age group (NCPD-W, Rank =9)
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@ Day pattern follow the trend of the expression of most of the top scoring genes.

@ NCPD-W is able to avoid component splitting which may help to discover new patterns.
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SUMMARY OF CONTRIBUTIONS

o Propose using optimal transport based tensor decomposition (NCPD-W) for the omics-time
course data.

@ Shown that NCPD-W can discover patterns which are not discovered by NCPD-F for the
rank 5 decomposition.

@ Shown that For higher rank decomposition, NCPD-W shows less component splitting
compared to NCPD-F.

FEBRUARY




NEXT STEPS

o Finding the appropriate set of hyperparameters for NCPD-W in order to improve the
decomposition quality.

o Understanding why some genes (like the HLAs in this study), do not follow patterns.

o For NCPD-W, search for another ground cost function which can act as prior in order to
reduce component splitting.

o Adding regularization in the tensor decomposition objective function in order to reduce
component splitting.
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